Download PDF
Editorial  |  Open Access  |  28 Feb 2018

Awakening the sleeping giant: methods for reactivating the inactive X chromosome as clinical treatment for X-linked disorders

Views: 4676 |  Downloads: 1215 |  Cited:   0
J Transl Genet Genom 2018;2:3.
10.20517/jtgg.2018.02 |  © The Author(s) 2018.
Author Information
Article Notes
Cite This Article

During evolution, the mammalian X chromosome acquired brain-related genes. Mutations of X-linked genes account for up to 30% of intellectual disabilities, 20% of which are linked to autism spectrum disorders[1,2]. Epimutations on the X chromosome have also been associated with a number of mental health conditions (e.g., depression, bipolar disorder and schizophrenia)[3-6]. Thanks to X chromosome inactivation (XCI), a mechanism which reversibly silences one of the two X chromosomes in females, female mammals are a somatic mosaic of two populations of cells, expressing either the paternal or the maternal X chromosome, usually in a 50-50 ratio[7-9]. This aspect of female biology is particularly relevant for X-linked dominant disorders. Indeed, while males die at birth or have very severe phenotypes from X-linked mutations, heterozygous female mammals tolerate them, due to the presence of the wild type (WT) gene on the other X chromosome[10]. Therefore, in females, it is in principle possible to re-activate the WT XCI-silenced copy of the gene in order to alleviate or rescue any given disease phenotype. This is critical for a variety of genetic pathologies, ranging from poorly characterized genetic diseases such as CDKL5 syndrome to more frequent and better-described diseases, such as Rett syndrome.

In this special issue, Cantone[11] describes the reversal of XCI during development and reprogramming by expression of pluripotency factors, cell fusion or somatic cell nuclear transfer. Cantone[11] also compares and contrasts human and mouse systems, emphasising significant differences between them. Przanowski et al.[12] discuss pharmacological and genetic ways to reactivate the inactive X chromosome (Xi). They summarise the efforts that have been made to date to achieve Xi reactivation using these approaches alone or in combination. The authors also compare various experimental cellular systems, highlighting the benefits and limitations of these reporter systems. Reviews from both teams are highly complementary and provide the reader with an accurate, comprehensive picture of the progress made so far in this field.

Partial reactivation of the inactive X chromosome for therapeutic approaches has so far proven hard to achieve and control. Nevertheless, it offers a new and exciting perspective for curing X-linked disorders. Most importantly, I believe that the knowledge gained by studying the reversal of the Xi goes well beyond X inactivation. Similar strategies could be used for treating a broad range of common illnesses, such as mental health disorders linked to epigenetic gene-silencing, and some forms of cancer.

Declarations

Authors’ contributions

Cerase A contributed solely to this editorial.

Financial support and sponsorship

None.

Conflicts of interest

There are no conflicts of interest.

Patient consent

Not applicable.

Ethics approval

Not applicable.

Copyright

© The Author(s) 2018.

REFERENCES

1. Sahin M, Sur M. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science 2015;350:aab3897.

2. Vissers LE, Gilissen C, Veltman JA. Genetic studies in intellectual disability and related disorders. Nat Rev Genet 2016;17:9-18.

3. Akbarian S, Nestler EJ. Epigenetic mechanisms in psychiatry. Neuropsychopharmacology 2013;38:1-2.

4. Chase KA, Rosen C, Rubin LH, Feiner B, Bodapati AS, Gin H, Hu E, Sharma RP. Evidence of a sex-dependent restrictive epigenome in schizophrenia. J Psychiatr Res 2015;65:87-94.

5. Houtepen LC, van Bergen AH, Vinkers CH, Boks MP. DNA methylation signatures of mood stabilizers and antipsychotics in bipolar disorder. Epigenomics 2016;8:197-208.

6. Sun H, Kennedy PJ, Nestler EJ. Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 2013;38:124-37.

7. Cerase A, Pintacuda G, Tattermusch A, Avner P. Xist localization and function: new insights from multiple levels. Genome Biol 2015;16:166.

8. Pintacuda G, Young AN, Cerase A. Function by structure: spotlights on Xist long non-coding RNA. Front Mol Biosci 2017;4:90.

9. Pinter SF. A tale of two cities: how Xist and its partners localize to and silence the bicompartmental X. Semin Cell Dev Biol 2016;56:19-34.

10. Franco B, Ballabio A. X-inactivation and human disease: X-linked dominant male-lethal disorders. Curr Opin Genet Dev 2006;16:254-9.

11. Cantone I. Reversal of X chromosome inactivation: lessons from pluripotent reprogramming of mouse and human somatic cells. J Transl Genet Genom 2017;1:1-14.

12. Przanowski P, Waśko U, Bhatnagar S. Novel molecular players of X chromosome inactivation: new technologies and new insights. J Transl Genet Genom 2018;2:2.

Cite This Article

Export citation file: BibTeX | RIS

OAE Style

Cerase A. Awakening the sleeping giant: methods for reactivating the inactive X chromosome as clinical treatment for X-linked disorders. J Transl Genet Genom 2018;2:3. http://dx.doi.org/10.20517/jtgg.2018.02

AMA Style

Cerase A. Awakening the sleeping giant: methods for reactivating the inactive X chromosome as clinical treatment for X-linked disorders. Journal of Translational Genetics and Genomics. 2018; 2(-1): 3. http://dx.doi.org/10.20517/jtgg.2018.02

Chicago/Turabian Style

Cerase, Andrea. 2018. "Awakening the sleeping giant: methods for reactivating the inactive X chromosome as clinical treatment for X-linked disorders" Journal of Translational Genetics and Genomics. 2, no.-1: 3. http://dx.doi.org/10.20517/jtgg.2018.02

ACS Style

Cerase, A. Awakening the sleeping giant: methods for reactivating the inactive X chromosome as clinical treatment for X-linked disorders. J. Transl. Genet. Genom. 2018, 2, 3. http://dx.doi.org/10.20517/jtgg.2018.02

About This Article

Special Issue

© The Author(s) 2018. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Data & Comments

Data

Views
4676
Downloads
1215
Citations
0
Comments
0
0

Comments

Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.

0
Download PDF
Cite This Article 1 clicks
Like This Article 0 likes
Share This Article
Scan the QR code for reading!
See Updates
Contents
Figures
Related
Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/