Hot Keywords
Rett Syndrome Intellectual disability mitochondrial disease next-generation sequencing language disorders monogenic epilepsies early-onset epilepsy movement disorders autism suicide schizophrenia

J Transl Genet Genom 2021;5:62-63.10.20517/jtgg.2020.54© The Author(s) 2021.
Open AccessEditorial

Mitochondrial medicine: the future is now

Division of Neurogenetics and Neurodevelopmental Pediatrics, Children’s National Hospital and the George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA.

Correspondence Address: Dr. Andrea L. Gropman, Division of Neurogenetics and Neurodevelopmental Pediatrics, Children’s National Hospital and the George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, N.W., Washington, DC 20010, USA. E-mail:

    This article belongs to the Special Issue Diagnosis and Treatment of Mitochondrial Disease
    Views:654 | Downloads:120 | Cited:0 | Comments:0 | :3
    Academic Editor: Andrea L. Gropman | Copy Editor: Cai-Hong Wang | Production Editor: Jing Yu

    © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (, which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

    The mitochondrial cytopathies are complex disorders that show phenotypic and genetic heterogeneity. Over the last decade, advances in mitochondrial research has earned it a “seat at the table” and its own specialty of medicine: “mitochondrial medicine”. Considered the “powerhouses of the cell” and the major driver of cellular ATP, we can now appreciate the expanded role of the mitochondria in health and disease as an evolving and multidisciplinary area of research[1,2]. The scope of inherited and genetic mitochondrial disorders ranges from infancy onset global disease to organ specific disorders in adults such as myopathy and cardiac and liver disorders[3]. Secondary mitochondrial dysfunction has also been shown to play a role in many adult neurodegenerative conditions[4].

    This Special Issue about mitochondrial medicine focuses on the complexities of clinical phenotypes, diagnosis, genetics, genomics, and pharmacogenomics which may drive individualized and personalized treatment. Although genomic testing is standard in terms of the clinical panels that are available, the field is still expanding[5]. Low heteroplasmy in accessible tissues and variants of unknown significance still require functional studies to clarify their meaning and contribution to the phenotype and/or biochemical alterations in patients[6].

    In relation to disease, the emerging bioenergetic mitochondrial model suggests that mitochondrial defects contribute to the development of age-, stage-, and stress-related diseases by altering complex cellular and physiological functions[7].


    Authors’ contributions

    The author contributed solely to the article.

    Availability of data and materials

    Not applicable.

    Financial support and sponsorship


    Conflicts of interest

    The author declared that there are no conflicts of interest.

    Ethical approval and consent to participate

    Not applicable.

    Consent for publication

    Not applicable.


    © The Author(s) 2021.


    • 1. Picard M, Wallace DC, Burelle Y. The rise of mitochondria in medicine. Mitochondrion 2016;30:105-16.

    • 2. Schirrmacher V. Mitochondria at work: new insights into regulation and dysregulation of cellular energy supply and metabolism. Biomedicines 2020;8:526.

    • 3. DiMauro S. A brief history of mitochondrial pathologies. Int J Mol Sci 2019;20:5643.

    • 4. Schon EA, Przedborski S. Mitochondria: the next (neurode)generation. Neuron 2011;70:1033-53.

    • 5. Russell OM, Gorman GS, Lightowlers RN, Turnbull DM. Mitochondrial diseases: hope for the future. Cell 2020;181:168-88.

    • 6. Duan M, Tu J, Lu Z. Recent advances in detecting mitochondrial DNA heteroplasmic variations. Molecules 2018;23:323.

    • 7. Dillon LM, Williams SL, Hida A, et al. Increased mitochondrial biogenesis in muscle improves aging phenotypes in the mtDNA mutator mouse. Hum Mol Genet 2012;21:2288-97.


    Cite This Article

    Gropman AL. Mitochondrial medicine: the future is now. J Transl Genet Genom 2021;5:62-63.



    Download and Bookmark


    Download PDF Add to Bookmark

    Share This Article

    Article Access Statistics

    Full-Text Views Each Month

    PDF Downloads Each Month


    Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at

    © 2016-2021 OAE Publishing Inc., except certain content provided by third parties